A Krull-Schmidt Theorem for One-dimensional Rings of Finite Cohen-Macaulay Type
نویسندگان
چکیده
This paper determines when the Krull-Schmidt property holds for all finitely generated modules and for maximal Cohen-Macaulay modules over one-dimensional local rings with finite Cohen-Macaulay type. We classify all maximal CohenMacaulay modules over these rings, beginning with the complete rings where the Krull-Schmidt property is known to hold. We are then able to determine when the Krull-Schmidt property holds over the non-complete local rings and when we have the weaker property that any two representations of a maximal Cohen-Macaulay module as a direct sum of indecomposables have the same number of indecomposable summands.
منابع مشابه
Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
متن کاملHigher Auslander-Reiten theory on maximal orthogonal subcategories
We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...
متن کاملVanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کاملSingularities and Direct-sum Decompositions
Let (R; m;k) be a local ring (commutative and Noetherian). We will discuss existence and uniqueness of direct-sum decompositions of nitely generated R-modules. One says that R has nite CM type provided there are only nitely many indecomposable maximal Cohen-Macaulay R-modules up to isomorphism. Among complete equicharacteristic hypersurface rings with k algebraically closed of characteristic 6 ...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کامل